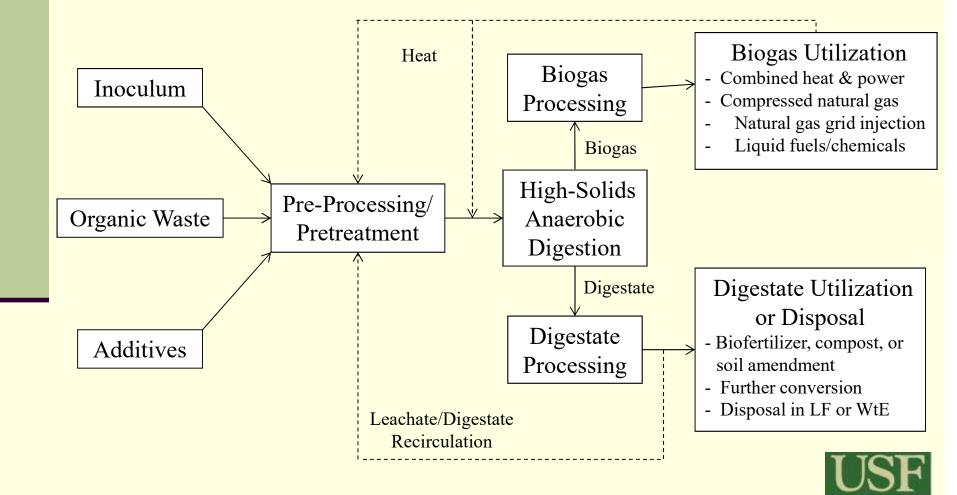


Phase II Bioenergy Production from MSW by High Solids Anaerobic Digestion

Sarina J. Ergas, PhD, PE, BCEE Qiong Zhang, PhD Dept. of Civil & Environmental Engineering USF, Tampa, FL

> TAG Kick-Off Meeting March 28, 2017

Anaerobic Digestion of MSW


- Common in Europe and increasing in US
- Diversion of organic fraction of MSW (OFMSW) for separate anaerobic digestion (AD)
 - Enhance energy recovery
 - Produce higher quality biogas
 - Reduce GHG emissions
 - Extend landfill life
 - Improved leachate quality
 - Produce a soil amendment (compost)
 - Offsets impacts of inorganic fertilizer production

Intro to HS-AD (a.k.a. SS-AD)

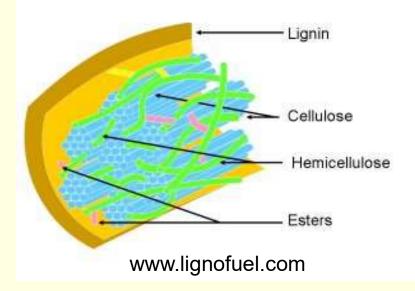
Designed to process feedstocks with > 15% total solids content.

Zero Waste Energy, Monterey

Advantages of HS-AD vs. L-AD

- Reduced parasitic energy demands
- Reduced reactor volume requirements
- Reduced water usage and leachate generation

Sordisep Process, Brecht



BioFERM Process

HS-AD Challenges

- Slow start up times & large reactor volumes:
 - Lignin biodegradation barrier
 - Co-digestion with pulp & paper AD sludge (P&P) potential to increase biogas production.

- Lack of knowledge among MSW stakeholders.
- Lack of life cycle & economic assessments specifically looking at HS-AD sustainability.

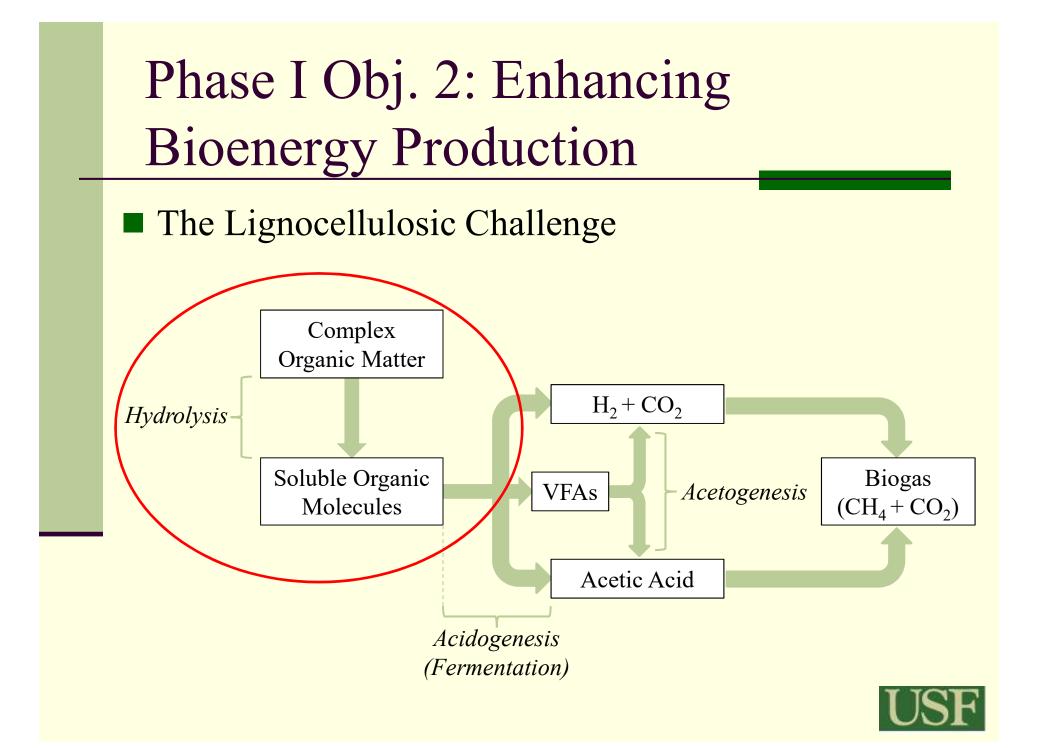
Phase I Obj. 1: What is the state-of-the-art of HS-AD?

Goals

- Understand trends and identify primary drivers in the industry
- Identify appropriate technologies for implementation in FL

Methodology

- Review published and "grey" literature
- Developed chronological database of US HS-AD projects
- Visits to facilities in California and the Netherlands



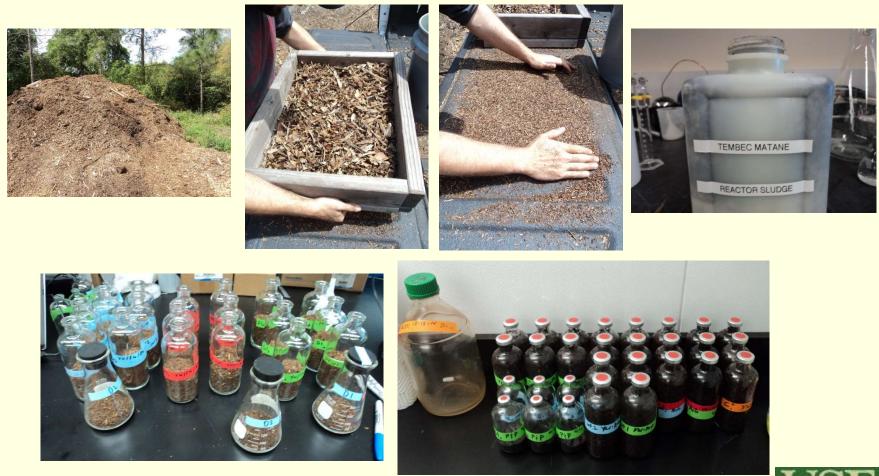
Major Findings Obj. 1

Policy promoting OFMSW recycling in the US increasing:

- 20 states now have yard waste landfill bans, 5 have food waste bans
- 7 have landfill diversion targets
- Over 200 communities offer separate collection of food waste
- *Required* source-separation in San Francisco, Seattle, VT, and CT
- 29 states now have renewable portfolio standards
- HS-AD implementation parallels policy development
 - HS-AD has surpassed L-AD for OSFMW processing capacity
 - CA is leading the way with policy and HS-AD development
- Single-stage, batch, thermophilic, "garage" type systems are the most suitable for Florida
 - Low cost, simple operation, reliable, compost pathogen free

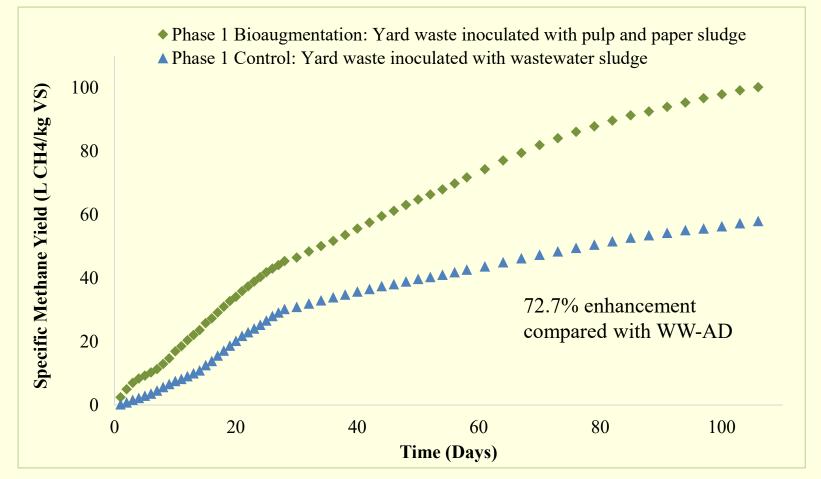
Phase I Obj. 2: Enhancing Bioenergy Production

Goals

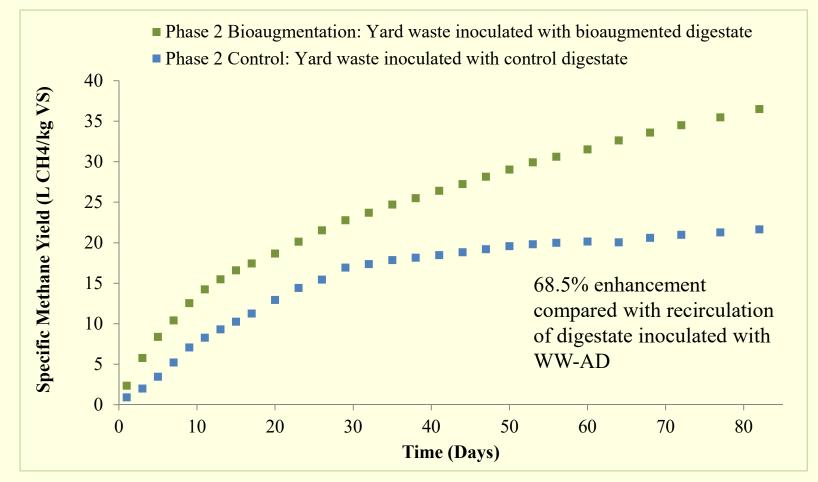

- Study the effects of bioaugmentation with P&P on methane yields in HS-AD of yard waste
- Determine whether enhancements can be sustained via digestate recirculation

Hypothesis

 Hydrolytic microorganisms in sludge from AD of P&P are adapted to lignocellulosic waste and therefore have a greater capacity to degrade lignocellulosics than a conventional inoculum.



Materials & Methods



Methane Yields – Direct Inoculum

Methane Yields - Recirculation

Major Findings Obj. 2

- Significant methane yield enhancements with P&P codigestion
- Chemical and lignocellulosic data support hypothesis
 - VFA concentrations indicate methanogenesis was rate-limiting in bioaugmented digesters while hydrolysis was limiting in control digesters
 - 16%, 16%, and 2% less lignin, cellulose, and hemicellulose in bioaugmented digestate relative to control digestate
 - Comparison with other pre-treatment methods:
 - Potentially lower cost, less energy & chemicals and waste generation than thermal or chemical pretreatment.

Phase I Obj. 3: Potential for HS-AD Implementation in FL

Goals

- Identify best FL counties for HS-AD implementation:
 - Existing MSW infrastructure
 - Potential bioenergy production & GHG emissions reductions
 - Potential for nutrient recovery.
- Evaluate economics and develop policy recommendations.

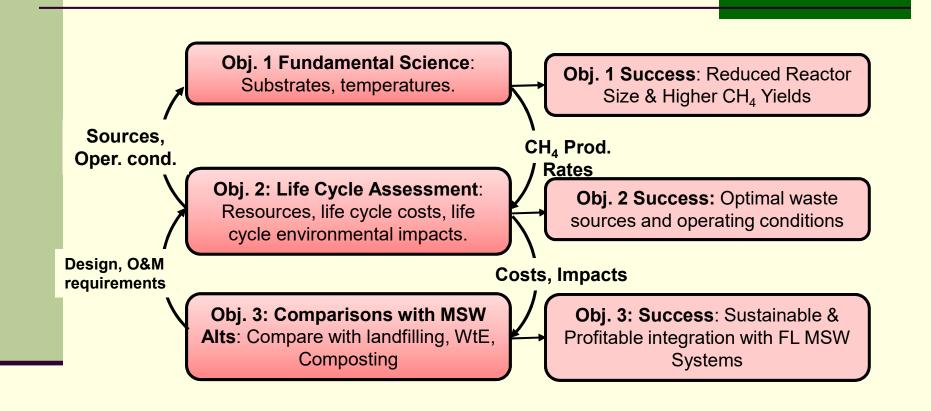
OFMSW "Recycling" Infrastructure

Incentives for HS-AD in Florida

■ 75% recycling goal by 2020

- Current statewide recycling rate = 50%
 - Yard and food waste recycling rates = 51% and 7%, respectively
- 12% of waste stream is yard waste and 7% is food waste
 - Up to 13% increase in recycling rate achievable via OFMSW recycling
- Renewable energy generation
 - Up to 500MW of renewable energy could be produced
 - 175 MW electricity (~1% of FL total demand, > \$120M) + 200 MW heat
 - OR: 80 million DGEs of CNG per year (~11.5% of FL total demand)
 - 660,000 MTCO₂E per year offset (~\$3.2M \$400M)
- Nutrient recovery
 - Up to 7,000 TPY and 3,500 TPY of N and P, respectively (~\$ 2.1M)

Obj. 3 Major Findings


- Outlook is promising, especially in highly populated counties
- Potential environmental and economic benefits are significant
- Economic sustainability is reliant upon numerous factors
 - Local tipping fees
 - Quantity, quality, and proximity of available feedstock
 - Energy and compost markets and renewable energy incentives
 - Public-private partnerships
- Legislative incentive has potential to greatly improve the feasibility of HS-AD implementation; recommendations:
 - Bans on landfilling food waste and yard waste
 - Mandated source-separation of food waste and yard waste
 - Policies promoting compost use and renewable energy generation

Phase II: Goals & Objectives

- The overall goal is to improve the environmental and economic sustainability of HS-AD of OFMSW in Florida. Specific objectives for Phase II are to:
 - Investigate the performance of HS-AD of OFMSW with varying substrate ratios (yard, food, biosolids) and temperatures (35, 55 °C).
 - Apply life cycle analysis (LCA) to guide the selection of waste sources and operating conditions for HS-AD and
 - Compare HS-AD with other waste management options (e.g., landfilling, waste to energy (WtE), composting) to ensure economic and environmental sustainability.

Research Plan: Experimental

Stage	Scale	Substrate	Temp. °C	Effect of:	
		YW, FW			
I	Bench	YW, FW, BS	35	BS and OS	
		YW, FW, BS, OS			
П	Bench	YW, FW, BS	35, 55	Temperature	
	Bench	YW/FW/BS	Develop	Substrate ratios	
IV	Pilot	YW, FW, BS	Based on Phase II	Scale	
V	Pilot	Based on LCA		Data for LCA	

- Address research gaps identified in Phase I related to biosolids (BS) and alkalinity sources.
- Improved methodology greater repeatability.
- Provide data for LCA studies.

Research Plan: LCA

- Used to investigate tradeoffs in energy consumed in collection, transport & processing and produced by HS-AD.
- Screening LCA includes collection, transportation & processing in Hillsborough Co.
- Waste sources mapped using GIS to estimate transportation distances.
- Energy for collection & transport Hillsborough MSW Management System.
- Energy produced from wastes and conditions literature & experiments.
- System boundary: cradle-to-gate; Functional unit: 1 L CH₄.
- Impact categories: energy demand, GHGs, acidification, eutrophication.
- Screening LCA will guide selection of waste sources and operating conditions for pilot experiments.

Research Plan: Life Cycle Cost Analysis

- Comparison of HS-AD, landfilling, WtE, and composting.
- Comparison based on the dry weight of waste processed since different strategies have different beneficial products, for example (energy, compost).
- MSW infrastructure mapped using GIS to estimate collection and transportation costs.
- LCCA will include infrastructure, O&M, collection and transportation costs and revenue from beneficial products.
- HS-AD infrastructure costs obtained from literature, existing HS-AD installations.
- Cost information for LF, WtE and composting obtained from Hillsborough County's MSW Management System.

Phase II: Preliminary BMPs Assays

Table 1. Experimental Set-Up Based on VS

Mixture	<u>Alkalinity</u> <u>Source</u>	<u>FW</u> (g VS)	<u>GW</u> (g VS)	Biosolids (g VS)	Inoculum (I) (g VS)	<u>S/I</u> <u>Ratio</u>
FW+GW	-	1.2	1.0	0.0	1.2	1.8
FW+GW+B	-	1.2	1.0	1.0	1.2	2.7
FW+GW	Oyster Shells	3.5	3.0	0.0	3.5	1.8
FW+GW+B	Oyster Shells	3.5	3.0	3.1	3.5	2.7
FW+GW	Limestone	3.5	3.0	0.0	3.5	1.8
FW+GW+B	Limestone	3.5	3.0	3.1	3.5	2.7
Seed Sludge (Blank)	-	0.0	0.0	0.0	1.6	Ν

Notes:

B = Biosolids (Dewatered WAS)

FW = Food Waste

GW = Green Waste

I = Inoculum (L-AD Effluent)

N/A = Not Applicable

S = Substrate

VS = Volatile Solids

CH₄ Yields for OFMSW With & Without Biosolids

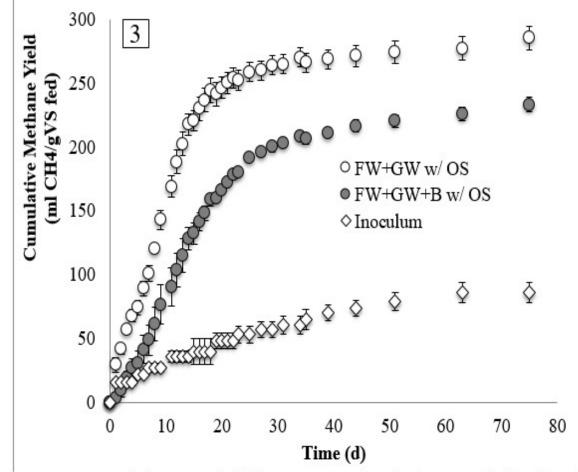


Figure 3. Cumulative CH4 Yield for FW+GW w/Crushed Oyster Shells with and without Biosolids

- <u>CH₄ Yields Lower When B</u> Added to FW+GW
- May be due to differences in substrate to inoculum ratios
 (S/I) with and without B
- <u>Advantages of biosolids</u> <u>addition:</u>
 - <u>Increased overall</u> <u>bioenergy production</u>,
 - <u>Recovery of nutrients, and</u>
 - <u>Diversion of biosolids</u> <u>from land application or</u> <u>landfilling</u>

CH₄ Yields With Different Alkalinity Sources

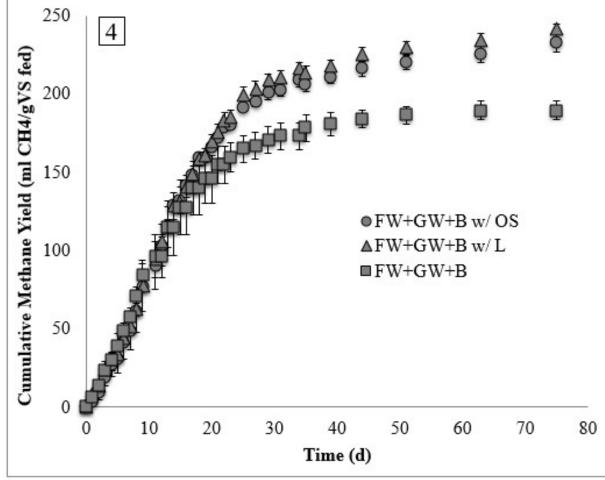
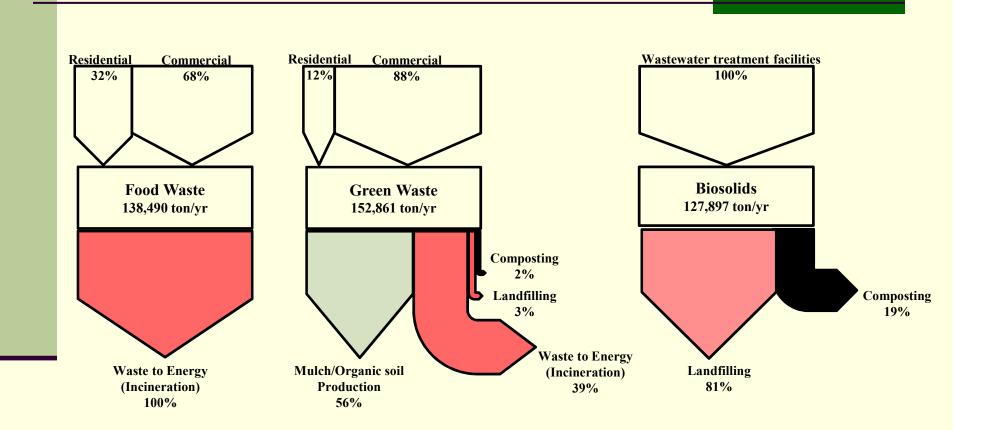



Figure 4. Cumulative CH4 Yield for FW+GW+B w/Crushed Oyster Shells and Limestone as Alkalinity Sources

- CH₄ Yields Higher With added alkalinity
- May be because of VFA
 production and localized
 alkalinity imbalances within
 micro-niches due to
 incomplete mixing
- No significant differences between OS and L

Production & Management Flow for FW, GW, & B in 2015 for Hillsborough County

Life Cycle Cost Analysis (LCCA) of HS-AcD

Life Cycle Cost (LCC):

 $LCC = C_I + C_{O\&M} \times UPV^* + C_{C\&T} \times UPV - (C_{R,t\&b\&h} \times UPV + C_{R,e} \times UPV^*)$

where

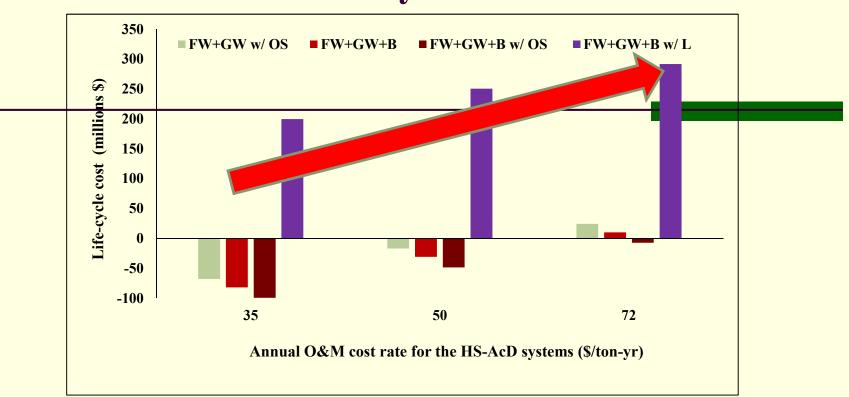
- C_I : Initial Cost
- $C_{O\&M}$: Operation and Maintenance Cost
- $C_{C\&T}$: Collection and Transportation Cost
- $C_{R,t\&b\&h}$: Revenues from Tipping Fee Saving and Digestate and Heat Sales
- $C_{R,e}$: Revenue from Electricity Sale
- UPV: Uniform Present Value Factor
- UPV*: Non-Uniform Present Value Factor

Parameters Considered in LCCA

Input	<u>Value</u>	<u>Reference</u>	
Discount or Interest Rate (%)	1.9	USIR 2016	
Escalation Rate (%)	0.65	EERC 2017	
Operation and Maintenance Cost Rate (\$/ton)	72	Vavrin et al. 2014	
Average Hauling Distance (miles)	50	Assumed	
Collection and Transportation Rate (\$/mile/ton)	0.1	Faucette et al. 2002	
Tipping Fee (\$/ton)	20	County 2016	
L (\$/kg)	1.3	Survey 2017	
L Consumption (kg/ton organic wastes)	109	Obtained from our experiments	
OS (\$/kg)	0	Assumed	
OS Consumption (kg/ton organic wastes)	82	Obtained from our experiments	
Heating Value (kWh/m ³)	9.94	Passos and Ferrer 2015	
Combined Heat and Power Efficiency:	49.5		
Heat (%)	49.5	BIOFerm 2017	
Electricity (%)	37.3		
Electricity Rate (\$/kWh)	0.08	EIA 2016	
Heat Rate (\$/kWh)	0.01	Moriarty 2013	
Stabilized B Price (\$/ton)	11.2	Schwarzenegger 2010	
Life cycle Cost Analysis Period (yr)	25	Assumed	

Life Cycle Costs (LCCs) Over 25 years

Item	FW+GW w/OS	FW+GW+B	FW+GW+B w/OS	FW+GW+B w/L
Initial Cost (\$)	38,410,000	38,410,000	38,410,000	38,410,000
O&M Cost (\$)	174,526,000	174,526,000	174,526,000	491,508,000
C&T Cost (\$)	373,000	373,000	373,000	373,000
Tipping Fee Saving (\$)	1,978,000	19,896,000	19,896,000	19,896,000
Electricity Sale (\$)	145,430,000	142,118,000	157,261,000	173,139,000
Heat Sale (\$)	19,638,000	19,190,000	21,235,000	23,379,000
Digestate Sale (\$)	21,925,000	21,925,000	22,376,000	22,226,000
Life Cycle Cost (LCC) (\$)	24,339,000	10,180,000	-7,460,000	291,652,000



LCCA Summary

- Revenues: Electricity Sale >> Heat Sale or Digestate Sale > Tipping Fee Saving
- Tipping Cost Saving:
 - FW+GW w/OS: 5,000 tons/yr (3% of Total GW)
 - Other Options: 5,000 tons/yr (3% of Total GW)+45,300 tons/yr (35% of total B)
- Addition of B Increased HS-AcD Revenues
- FW+GW+B w/L: Highest O&M Cost Due to Limestone Use
- HS-AcD Largest Contributor: O&M Cost
- Most Economical HS-AcD: FW+GW+B w/OS Due to High CH₄ Production

Sensitivity of LCCs

- LCC Results For All Options Increased as the Annual O&M Cost Rate Increased
- Annual O&M Cost Rates Were Significant Factors When Determining Economic Feasibility of Systems
- The <u>Most Economical HS-AcD was FW+GW+B w/OS For All O&M</u> <u>Cost Rates</u> Investigated

Preliminary Study: Conclusions

- Biosolids addition increased overall CH₄ production and revenues
- Alkalinity source addition increased CH₄ yields
 - OS is low-cost waste product (decreased LCC values)
- Most Economically Sustainable Option: HS-AcD of FW+GW+B w/OS
- Diverting OFMSW from landfills potentially improves leachate quality
- Avoiding L-AD of biosolids recovers nutrients and avoids the production of sidestreams requiring further treatment.

Practical Benefits for End-users

- Diversion of organic waste from landfills & land application,
- Higher bioenergy production that landfills,
- Reduced fugitive GHG emissions,
- Lower leachate production and improved leachate quality
 - Reduced impacts of L-AD sidestreams and leachate on mainstream WWTPs.
- Production of compost that can be sold or used by municipal agencies or community members.

Metrics: Education

Graduate Students and Post-doc:

Name	Name Rank Department		Institution
Hinds, Gregory*	MS	Civil & Environmental Engineering	USF
Dick, George*	MS	Civil & Environmental Engineering	USF
Wang, Meng	Postdoctoral Researcher	Civil & Environmental Engineering	USF
Anferova, Natalia*	Visiting PhD student	Water Technology & Environmental Eng.	Prague Univ. Chemistry & Technology
Dixon, Phillip	PhD	Civil & Environmental Engineering	USF
Eunyoung Lee	PhD	Civil & Environmental Engineering	USF

Undergraduates:

Name	Department	Institution
Ariane Rosario*	Civil & Environmental Engineering	USF
Lensey Casimir	Civil & Environmental Engineering	USF
Paula Bittencourt	Mechanical Engineering	USF
Eduardo Jimenez	Civil & Environmental Engineering	USF

Additional support: USF TA, NSF and USF Scholarships, EU and NSF REU and RET programs.

HS-AD Research Team

K-12 and Community Education

ngineering expo

Dissemination: Publications

Peer Reviewed Journal Article:

Hinds, G.R., Mussoline, W., Casimir, L., Dick, G., Yeh, D.H., Ergas, S.J. (2016) Enhanced methane production from yard waste in high-solids anaerobic digestion through inoculation with pulp and paper mill anaerobic sludge, *Environmental Engineering Science*, 33(11): 907-917.

Book Chapter:

Hinds, G.R., Lens, P., Zhang, Q., Ergas, S.J. (*in press*) Microbial biomethane production from municipal solid waste using high-solids anaerobic digestion, In *Microbial Fuels: Technologies and Applications*, Serge Hiligsmann (Ed), Taylor & Francis, Oxford, UK.

MS Thesis:

 Hinds, G.R. (2015) High-Solids Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste State of the Art, Outlook in Florida, and Enhancing Methane Yields from Lignocellulosic Wastes, MS Thesis.

Professional Publications:

- Hinds, G.R., Dick, G., Yeh, D.H., Ergas, S.J. (2015) Enhanced methane production from yard waste in solidstate anaerobic digestion, *IWA Specialist Group on Anaerobic Digestion Newsletter*, June 2015.
- Hinds, G.R., Dick, G., Yeh, D.H., Ergas, S.J. (2015) Resource recovery from organic solid waste through solid-state anaerobic digestion, *Talking Trash*, Spring, 2015.
- Hinds, G.R., Casimir, L., Dawley, M., Yeh, D.H., Ergas, S.J. (2015) Solid-State Anaerobic Digestion: An environmentally and economically favorable approach to OFMSW management? *Talking Trash*, Summer, 2015.

Website: http://bioenergy-from-waste.eng.usf.edu/

Dissemination: National & International Conferences:

- *Hinds, G.R., Mussoline, W., Dick, G., Yeh, D.H., Ergas, S.J. (2016) Enhanced methane production in solid-state anaerobic digestion through bioaugmentation, *Proc. GWMS;* Jan. 31-Feb. 3, 2016; Indian Wells, CA.
- Ergas, S.J., Hinds, G.R., Anferova, N., Bartáček, J., Yeh, D. (2016) Bioenergy recovery and leachate management through high solids anaerobic digestion of the organic fraction of municipal solid waste, *Proc. World Environmental & Water Resources Congress*; May 22-26, 2016; West Palm Beach, FL.
- Dixon, P., Bittencourt, P., Anferova, N., Jenicek, P., Bartacek, J., Wang, M., Ergas, S.J. (2016) Effects of Biosolids Addition, Microaeration, and Alkalinity Sources on High-Solids Anaerobic Co-digestion (HS-AcD) of Food Waste and Green Waste, Waste-to-Bioenergy: Applications to Urban Areas, 1st International ABWET Conference, Jan. 19-20, Paris, France.
 - Dixon, P., Bittencourt, P., Lee, E., Wang, M., Jimenez, E., Zhang, Q., Ergas, S.J. (2017) Effects of Biosolids Addition and Alkalinity Sources on High-Solids Anaerobic co-Digestion (HS-AcD) of Food Waste and Green Waste, *Proc. WEF Residuals and Biosolids Conference*, April 8-11, Seattle, WA.

Regional and State Meetings

Hinds, Gregory. "Bioenergy Production from MSW through SS-AD." USF, College of Engineering Research Day. **Tampa**, Florida. 19 Nov. 2014.

Hinds, Gregory. "Enhanced Methane Production from Lignocellulosic Waste in SS-AD through Bioaugmentation." USF, Graduate Student Research Symposium. **Tampa**, Florida. 10 Mar. 2015.

Hinds, Gregory. "Bioenergy Production from MSW through HS-AD: State of the Art and Outlook in Florida." AEESP Lecture Poster Session USF, **Tampa**, Florida. 13 Nov. 2015.

*Rosario, Ariane. "Enhanced Methane Production from Lignocellulosic Waste in SS-AD through Bioaugmentation." USF, Undergraduate Research and Arts Colloquium. **Tampa**, Florida. 9 Apr. 2015.

Casimir, Lensey. "SS-AD for the Recovery of Energy and Nutrients from Organic Solid Waste." USF, NSF REU Research Symposium. **Tampa**, Florida. 29 Jul. 2015.

Casimir, Lensey. "SS-AD for the Recovery of Energy and Nutrients from Organic Solid Waste." AEESP Lecture Poster Session USF, **Tampa**, Florida. 13 Nov. 2015.

*Dawley, Matthew. "Methane Production by SS-AD Co-digestion of the OFMSW." USF, NSF RET Research Symposium. **Tampa**, Florida. 29 Jul. 2015.

Casimir, Lensey and Anferova, Natalia. "Enhanced Methane Yield from Yard Waste in HS-AD through Bioaugmentation with P&P." Hinkley Center Colloquium. **Tallahassee**, Florida. 23 Sep. 2015.

Hinds, Gregory. "Bioenergy Production from MSW through HS-AD: State of the Art and Outlook in Florida." Hinkley Center Colloquium. **Tallahassee**, Florida. 23 Sep. 2015.

Hinds, Gregory. "Bioenergy Production from MSW through SS-AD." UCF, AEESP Lecture Poster Session. **Orlando**, Florida. 27 Feb. 2015.

Questions?

water • nutrients • energy

usf-reclaim.org

